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FOREWORD

Diamond domes are under development for high speed missiles. This final report
describes a study to determine the missile flight conditions where oxidation of a hot
diamond dome could limit performance. The time for a diamond dome to reach 800-
1000°C was calculated for various speeds and altitudes, and these times were compared
with the time required for degradation of the infrared transmission of diamond windows
when heated in air at 800-900°C. The experimental work was carried out from August
through October 1994.

The work was performed in the Aeromechanics and Thermal Analysis Section of the
Airframe Branch of the Airframe, Ordnance, and Propulsion Division, and in the Materials
Synthesis Section of the Chemistry and Materials Branch of the Research and Technology
Division. The project was sponsored by the Office of Naval Research (Contract
N0001494WX23016) and has been reviewed for technical accuracy by Daniel C. Harris
and Gene A. Jaeger.
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INTRODUCTION

Polycrystalline diamond prepared by chemical vapor deposition (CVD) is under
development as a missile dome material (Reference 1). Diamond has exceptional
properties important for a high speed missile dome including high thermal shock
resistance and excellent optical transparency (except in the mid-wave infrared (IR)
region). Aside from issues of fabrication and optimization of extrinsic properties, one of
the operational limits of diamond domes relates to oxidation of diamond that occurs at
elevated temperatures in the presence of oxygen. Air oxidation of diamond has an onset
at 480°C (Reference 2) and proceeds at significant rates above 600°C (References 3 and
4). However, the initial rate of diamond oxidation is typically much slower than the rate
at later times, apparently due to initial low microscopic surface area compared to the
rough surface of partially oxidized samples (References 4 and 5). A recent study at the
Naval Air Warfare Center Weapons Division (NAWCWPNS) determined the effects of
heating diamond in air for short times (45-555 seconds (s)) at 700-900°C (Reference 5).
Significant degradation of IR transmission occurred for CVD diamond when heated in a
furnace at 800°C for 75 s in air. The drop in IR transmission was due to scatter caused by
roughening of the surface and selective etching at grain boundaries. In contrast, natural
type Ila diamond (single crystal, no grain boundaries) showed little change when heated
at 800°C for 255 s and only a slight loss in IR transmission after heating at 900°C for
45s.

The oxidation study showed that time and temperature are critical parameters in
defining the oxidation resistance of diamond. A diamond missile dome in flight would
undergo aerodynamic heating with the temperature dependent upon the particular flight
profile. This study was conducted to determine the times required for diamond domes to
reach temperatures where diamond oxidation is rapid (=800°C), in order to aid in the
assessment of oxidation-limited flight conditions for diamond domes.

BACKGROUND

Parameters important in the aerodynamic heating of a diamond missile dome include
speed, altitude, and time. Based on the oxidation/IR transmission study mentioned above
(Reference 5), three temperatures (800, 900, and 1000°C) were chosen in the range where
diamond dome oxidation would be rapid. The times required for the maximum dome
temperature to reach these three temperatures were determined at various constant free-
stream Mach and altitude conditions. This parametric study will assist in determining the
operability of diamond domes for extended free flight at high speeds.
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ANALYSIS OF DIAMOND DOME TEMPERATURES

ANALYSIS PROCEDURES

An axisymmetric finite element model of the 1.5 inch (3.81 centimeters (cm)) radius
hemispherical diamond dome was created using the PATRAN program (Reference 6).
Thirty-six nodes were spaced around the dome's surface, and eleven nodes were spaced
through the 2.54 millimeter (mm) thickness with nodes clustered near the outer surface
(Figure 1). To calculate transient dome temperatures, a Systems Improved Numerical
Deficiency Analyzer (SINDA) heat transfer network model (Reference 7) was generated
from the finite element model, and the initial model node temperatures were set to 27°C
for all cases. Given the wide temperature range during the transient heating, temperature-
dependent CVD diamond properties (References 8 and 9) were used in the SINDA
model. On the exterior surface of the dome, an aerodynamic heating boundary condition
was applied, but radiation was neglected, and all other dome boundaries were adiabatic.

Aerodynamic heating of the diamond dome was calculated using results from the
Advanced Ballistic Re-entry System Shape Change Code (ASCC) program, a code that
uses engineering methods to compute supersonic/hypersonic aerodynamic heating of
axisymmetric bodies (Reference 10). Cold wall (27°C) heat transfer coefficients and
recovery enthalpies were computed by ASCC using the 1962 U.S. standard atmosphere,
and tables of this information were input to SINDA to calculate aerodynamic heating.
Since the heat transfer coefficient generally decreases with increasing wall temperature,
using the cold wall heat transfer coefficient regardless of the dome temperature gives
higher aerodynamic heat transfer rates and, hence, shorter (conservative) times for the
diamond dome to reach the target temperatures. Neglect of radiation from the exterior
surface and conduction to the mount that would be in contact with an actual dome also
has a conservative effect on the times calculated by reducing heat loss from the dome.

Flight was assumed to occur at constant altitude and Mach number. The parametric
matrix included altitudes from O to 200,000 feet (ft) (at 10,000 ft intervals from 0 to
100,000 ft and 20,000 ft intervals from 100,000 to 200,000 ft) and the following Mach
numbers: 4.1, 4.4, 4.7, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0 (Mach 3.9 was added for the
case of a 1-mm-thick dome). A flight condition was run only if its total temperature
exceeded the dome target temperature (800, 900, or 1000°C). Figure 2 shows how the
Mach number varies with altitude for different flow total temperatures (i.e., stagnation
temperatures). The nonuniformity in the curves is mainly due to the nonuniform
variation of temperature with altitude. Note that Mach 4.1 flight at sea level could reach
800°C, while Mach 4.1 flight at 20,000 ft could not. Consequently, there were fewer
flight conditions to check at the higher target temperatures.

ANALYSIS RESULTS

Figures 3 and 4 show the times required for the maximum temperature on the dome
to reach the 800°C target temperature for 2.54-mm and 1-mm-thick diamond domes (note
that the speed was extended down to Mach 3.9 for the 1-mm dome). Similarly, Figures 5
and 6 show the times required to reach the 900 and 1000°C target temperatures for the
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parametric matrix of conditions. If the time to reach the target temperature exceeds
900 s, that condition is not included in the results. This eliminates high altitude
conditions for which the heat transfer coefficient is low. The time to temperature is
inversely proportional to the heat transfer rate. The time generally increases as the
altitude increases and decreases as the Mach number increases. For example, Figure 3
shows that a 2.54 mm thick dome at Mach 5.0 would reach 800°C in 4.8 s at sea level, or
11.3 s at 20,000 ft, or 34 s at 40,000 ft. At Mach 8.0 the times to reach 800°C are 1 s at
20,000 ft, 12 s at 100,000 ft, and 100 s at 200,000 ft. At short times the maximum dome
temperature can be well below the total temperature. At Mach 5 at sea level, the 2.54 mm
thick dome reaches 800°C in 4.5 s, 900°C in 6.5 s, and 1000°C in 9 s, while the total
temperature is about 1250°C. When the total temperature approaches the target
temperature, the nonuniform variation in atmospheric temperature reflected in the curves
in Figure 2 is large enough to create conditions where the time to reach the target
temperature decreases as the altitude increases at a constant Mach number. This leads to
odd-shaped curves such as the Mach 4.4 curve in Figure 3.

Depending on the strength of the diamond material, different thicknesses would be
required. Figures 3 and 4 show that the thinner dome heats up faster due to its lower total
heat capacity, with the 1-mm dome reaching 800°C in 7 s at Mach 4.1 at sea level,
compared to 20 s for the 2.54-mm dome.

A considerable temperature variation can occur within the diamond dome. The
extent of the temperature variation for the 900°C target temperature cases is shown in
Figures 7-9 for 2.54-mm-thick domes. Figure 7 presents temperature contours for the
entire dome for the case of Mach 5.5 at 20,000 ft. When the temperature at the stagnation
point reaches 900°C, the temperature at the edge of the dome (90° away) is 200°C cooler.
Figure 8 shows the maximum variation in temperature on the surface of a 2.54-mm-thick
dome for all 900°C target temperature cases. Figure 9 details the dome external surface
temperature as a function of the angle from the stagnation point for the 20,000 ft cases.
Except for cases with the total temperature near the target temperature, the temperature
difference around the dome decreases with increasing altitude or target temperature, and
increases with increasing Mach number. The temperature variation around the dome
surface is much larger than the difference through the dome thickness. For example, at
Mach 8 sea level flight and 900°C target temperature, the temperature varies 575°C
around the dome and 40°C through the thickness. These temperature variations are
significant since diamond oxidation will not occur on the cooler portion of the dome and
a seeker might function even though part of the dome is oxidized.

Analysis can also be conducted for specific flight profiles if the profile data is
available. Figure 10 shows the maximum dome temperature for a diamond dome
(1.5-mm thick) during various medium range anti-air missile trajectories. Two missile
variants were chosen with two different flight profiles run for each missile. Figure 11
shows results of a similar calculation for a long range anti-air missile, again with two
different flight profiles shown. Severe degradation in diamond dome transmission would
be expected for the flight profiles in Figure 11 due to the extended time at high
temperature (>1000°C for over 1 minute (min)).

The analysis results presented here along with the diamond oxidation results in
Reference 5 allow for a rough quantitative assessment of the flight conditions where
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diamond missile domes are likely to degrade due to oxidation. One of the remaining
experimental uncertainties concerns the effect of the dynamic air flow on oxidation rate,
since the experiments in Reference 5 were conducted in static air. A study on natural
type Ila diamond crystals found that the oxidation rate was independent of oxygen
pressure (one atmosphere oxygen pressure) at 600-700°C (Reference 4), indicating that at
these temperatures the high air flow rate on a diamond dome would not affect the
oxidation rate. However, a study of CVD diamond films on silicon substrates found a 0.6
reaction order in oxygen at 700-800°C (Reference 11). At some sufficiently high
temperature, the oxidation of diamond will be significantly dependent on the rate of
transport of fresh oxygen to the surface rather than just the high thermal activation energy
(about 230 kilojoule/mole from References 3, 4, and 11) of the diamond-oxygen reaction.
It is likely that at 800°C the high air flow rate on a diamond dome will not substantially
increase the oxidation rate compared to the static air experiments, while at higher
temperatures the effect of air flow remains an open question. Thus, diamond domes
would be expected to withstand temperatures near 800°C (i.e., flight at Mach 4 to 4.5) for
about a minute without significant degradation. Flights at Mach 5 and above may be
restricted to shorter durations or higher altitudes to avoid oxidative degradation.

CONCLUSIONS

This parametric study considers a hemispherical diamond dome (i.e., uncovered
and nose-mounted) with several assumptions about heat transfer to the dome: cold wall
heat transfer coefficients are used and radiation to the environment is neglected. Also,
heat conduction to the dome mount was not considered. Consequently, the times
computed for the dome to reach the target temperatures are conservative and produce the
most restrictive oxidation-limited flight envelope. Design techniques that reduce dome
heating (such as a dome cover, a flat window, or active cooling) may be used to expand
the flight envelope. In addition, the mitigating effect of the temperature variation around
the dome depends on seeker design and missile operation characteristics that are not
considered. However, for a first look at transient dome heating, this study provides
valuable information necessary to assess oxidation-limited flight conditions for diamond
domes.
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